КТП математика 11 класс

Предмет: Математика
Категория материала: Рабочие программы
Автор:

Рабочая программа  по математике 11 класс  (6 часов в неделю

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа соответствует Федеральному компоненту государственного образовательного стандарта общего образования

 Данная рабочая программа составлена на основе:

-  федерального компонента государственного стандарта среднего (полного) общего образования по математике (профильный уровень),

- примерной программы среднего (полного) общего образования по математике (профильный уровень),

- программы по алгебре и началам математического анализа  10-11 классов (профильный  уровень) авторов И.И.Зубаревой, А.Г.Мордковича,

- программы по геометрии (профильный  уровень) авторов Л.С. Атанасян и др.

Общая характеристика учебного предмета

При изучении курса математики на профильном  уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа».

Актуальность:

Актуальность изучения математики на базовом уровне  состоит в создании  условий для повышения мотивации к обучению математики, умении применять полученные знания в практической деятельности при подготовке к ЕГЭ, а также знании о том как добывать, интегрировать или создавать новые знания и умения

 

Цели:

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

1.Формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

2.Развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

3.Овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

4.Воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Задачи:

1.Систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

2.Расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

3.Изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

4.Развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

5.Знакомство с основными идеями и методами математического анализа.

Количество часов:

Согласно Федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение предмета «Математика» в 11 классе отводится  170 часов  из расчета 5 часа в неделю (с учётом 34 учебных недель).  При этом предполагается построение курса в форме  последовательности тематических блоков с чередованием материала по алгебре, анализу, дискретной математике, геометрии.

 

 

ОСНОВНОЕ СОДЕРЖАНИЕ  

АЛГЕБРА

Степени и корни. Степенные функции

Понятие корня n-ой степени из действительного числа. Функции y = , их свойства и  графики. Свойства корня n-ой степени. Преобразование выражений, содержащих радикалы. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.

Степенные функции, их свойства и графики.

 

  Показательная и логарифмическая функции  

Показательная функция, её свойства и график. Показательные уравнения.

Показательные неравенства. Понятие логарифма. Логарифмическая функция, её свойства и график. Свойства логарифма. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е. Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования. Логарифмические уравнения.

 Логарифмические неравенства. Дифференцирование показательной и логарифмической функций.

 

 

Первообразная и интеграл

Первообразная и неопределенный интеграл. Понятие об определенном интеграле как площади криволинейной трапеции. Формула Ньютона-Лейбница

   

     Элементы комбинаторики, статистики и теории вероятностей

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

 

    Уравнения и неравенства. Системы уравнений и неравенств

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

ГЕОМЕТРИЯ

Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей

 Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Координаты и векторы

 Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

Повторение

 

                                            ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

 

В результате изучения математики на базовом уровне ученик должен

знать/понимать:

 значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

 значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

 универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

 вероятностный характер различных процессов окружающего мира.

 

Алгебра

Уметь:

 выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

 проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

 вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

 

Функции и графики

Уметь:

 определять значение функции по значению аргумента при различных способах задания функции;

 строить графики изученных функций;

 описывать по графику и в простейших случаях по формуле2 поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

 решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

 

Начала математического анализа

Уметь:

 вычислять производные и первообразные элементарных функций, используя справочные материалы;

 исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

 вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

 

Уравнения и неравенства

Уметь:

 решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

 составлять уравнения и неравенства по условию задачи;

 использовать для приближенного решения уравнений и неравенств графический метод;

 изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для построения и исследования простейших математических моделей.

 

Элементы комбинаторики,

статистики и теории вероятностей

Уметь:

 решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

 вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для анализа реальных числовых данных, представленных в виде диаграмм, графиков;

 анализа информации статистического характера.

 

Геометрия

Уметь:

 распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

 описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

 анализировать в простейших случаях взаимное расположение объектов в пространстве;

 изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

 строить простейшие сечения куба, призмы, пирамиды;

 решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

 использовать при решении стереометрических задач планиметрические факты и методы;

 проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

 вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

 

                                                                                                              Литература

1.    А. Г. Мордкович Алгебра и начала анализа 10–11 классы. (базовый уровень)Учебник - М.: Мнемозина2009 г.;

2.    А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Н. Мишустина, Е. Е. Тульчиская Алгебра и начала анализа 10–11 классы. ( базовый уровень)Задачник  – М: Мнемозина 2009 г.;

3.    А. Г. Мордкович Алгебра и начала анализа 10–11 классы. Пособие для учителей  М.: Мнемозина 2008 г.;

4.    В. И. Глизбург Алгебра и начала анализа 10 класс. Контрольные работы. Базовый уровень - М.: Мнемозина 2009 г.;

5.    В. И. Глизбург Алгебра и начала анализа 11 класс. Контрольные работы. Базовый уровень - М.: Мнемозина 2009 г.;

6.     Л. А. Александрова. Алгебра и начала анализа. Самостоятельные работы- М.: Мнемозина 2009 г.

7.    Шабунин М.И. и др. Алгебра  начала анализа: Дидактические материалы для 10 – 11 кл. – М.: Мнемозина, 2000

8.    Денищева Л.О. Корешкова Т.А. Алгебра и начала анализа. 10 –11 класс.: Тематические тесты и зачеты для общеобразовательных учреждений. Под ред. А.Г. Мордковича.-

     М.: Мнемозина, 2009

                                                                                                 Медиаресурсы

  1. Сайт « Решу ЕГЭ»  http://reshuege.ru/
  2. Сайт « Открытый банк заданий по математике» http://www.mathеgе.ru
  3. Сайт А.А. Ларина http://alexlarin.net/
Тип материала: Документ Microsoft Word (docx)
Размер: 59.61 Kb
Количество скачиваний: 84
Просмотров: 163

Похожие материалы