Здесь была ссылка на работу Квадрат тендеу автора Игисенова Гаухар Жангирхановна.
Ссылка на нее удалена по требованию посредника Инфоурок.
Если вы являетесь автором этой работы и хотите подтвердить её публикацию на этом сайте,
.
Жаңа сабақты түсіндіру Мысал қарастырайық. Ауданы 6м2 тіктөртбұрыш пішінді жер телімін қоршау керек болсын. Жер теліміннің бір қабырғасы қоршау бар жақтан өтеді. Егер қоршауға арналған материалдың ұзындығы 8м ғана болса, онда тіктөртбұрышты жер телімінің ені қандай болу керек? Шешуі: Есептің шарты бойынша, жер телімінің бір жақ қабырғасына материалдың қажеті жоқ . Қоршауды қажет етпейтін қабырға жер телімінің ұзындығы екені белгілі. Олай болса, 8м материалмен екі ені мен бір ұзындығын қоршау керек. Жер телімінің енін хм деп алсақ, ұзындығы (8-2х)м болады. Демек жер телімінің ауданы х*(8-2х)м2. Есептің шарты бойынша х*(8-2х)=6 теңдеуін аламыз. Теңдеуді түрлендірсек , 2х2-8х+6=0 немесе х2 -4х +3 =0 теңдеуі шығады. Енді шыққан теңдеуді х2=4х – 3 түріне келтіріп, графиктік тәсілмен шешейік. Ол үшін y=x2 және y=4x-3 болатын екі функцияны қарастырамыз. Бірінші функцияның графигі парабола, ал екінші функцияның графигі түзу болады. Функциялардың графиктері абсциссалары 1 және 3 болатын екі нүктеде қиылысады, теңдеудің x=1 және x=3 екі шешімі бар. Есептің шартын x=1 мәні ғана қанағаттандырады. Сонымен, жер телімінің ені 1м, ұзындығы сәйкесінше 6м. Есеп шығару барысында жаңа х2 - 4х + 3=0 теңдеуі қарастырылды. Бұл теңдеудің сол жағында белгісіз айнымалыға тәуелді екінші дәрежелі көпмүше, ал оң жағында нөл саны берілген бұндай теңдеу квадрат теңдеу болады. Анықтама: ах2 +вх +с =0 түрінде берілген теңдеу квадрат теңдеу деп аталады. Мұндағы а,в,с – нақты сандар және а ал х-айнымалы. Бұл теңдеудегі а-1-ші коэффициент, в-2-ші коэффициент, с- бос мүше. Егер теңдеудегі в≠0 және с≠0 болса, онда ол теңдеу толық квадрат теңдеу деп аталады. Мысалы, х2-2х-1 =0, 3х2 -8х +5 =0, 2,1х2 +10,2х + 0,8=0 толық квадрат теңдеулер. Ал егер в және с, немесе в мен с нөлге тең болатын дербес жағдайлардағы квадрат теңдеу толымсыз квадрат теңдеу деп аталады.