Программа элективного курса по математике в 10 классе "Отдельные вопросы теории многочленов"
Предмет: | Математика |
---|---|
Категория материала: | Рабочие программы |
Автор: |
Рузанова Ирина Михайловна
|
Пояснительная записка
Данный курс рассчитан для учащихся 10 класса на 35 часов в год, и предлагает изучение таких вопросов, которые не входят в школьный курс математики, но закладывают основы для дальнейшего (вузовского) его изучения. Включенный в программу материал может применяться для разных групп школьников за счет обобщенности знаниевого компонента и его преемственности с базовым уровнем, практической направленности.
Базовый уровень знакомит с многочленами, с действиями над многочленами (сложением, вычитанием и умножением), разложением многочлена на множители, с формулами сокращенного умножения. Решаются квадратные уравнения; учащиеся знакомятся с формулами Виета, выражающими зависимость между корнями квадратного уравнения и его коэффициентами. Рассматривается метод решения рациональных уравнений четвертой степени путем введения вспомогательной переменной.
Цель занятий данного профильного курса - расширить знания школьников о многочленах, рассмотреть новое действие для многочленов, а именно: деление многочленов нацело и с остатком. Сформировать представление о методах и способах решения нестандартных задач и алгебраических уравненийна уровне, превышающем уровень государственных образовательных стандартов. Знакомство с теорией многочленов позволит учащимся решать определенные олимпиадные и конкурсные задачи.
Предложенный материал обеспечивает преемственность между числами и многочленами, является доступным, интересным, воспитывает математическую культуру учащихся и вполне уместен для развития устойчивого интереса к математике, мыслительных и творческих способностей. Теория многочленов богата идеями, содержит много практически применяемых приёмов. Ее методы интересны, не трудоемки для изложения и приводят к глубоким результатам, имеющим многочисленные приложения. Важность теории многочленов состоит еще в том, что с помощью многочленов можно получить хорошие приближения различных функций, что позволяет применять теорию многочленов во многих вычислительных методах и в компьютерной математике. Изучение теории многочленов поможет ученику с единых позиций взглянуть на многие задачи математики, успешно решать сложные уравнения и неравенства (в том числе и в заданиях ЕГЭ), почувствовать связь между чистой и прикладной математикой. В предлагаемом курсе каждое положение теории многочленов сопровождается большим количеством примеров и исследовательских задач.
Соответствующий подбор материала преследует следующие цели: с одной стороны - это создание базы для развития способностей учащихся, расширения кругозора, с другой - восполнение некоторых содержательных пробелов основного курса, подготовка к сдаче ЕГЭ, а также включение учащегося в поисковую деятельность, как фактор личностного развития; развитие коммуникативных навыков в процессе практической деятельности.
Для достижения поставленных целей в процессе обучения решаются следующие задачи:
1.Приобщение учащихся к работе с математической и справочной литературой.
2.Выделение логических приёмов мышления, их осмысление и овладение ими.
3.Обеспечение диалогичности процесса обучения математике.
4.Формирование потребности к целенаправленному самообразованию.
Вид курса: расширяющий и углубляющий базовый курс.
Профильное обучение в старших классах стало требованием времени, но переход к нему достаточно труден. Элективные курсы, проводимые в 8-9 классах, способствуют интенсификации образовательного процесса и призваны помочь профессиональному ориентированию и самоопределению школьников. Эти курсы предоставляют возможность оценить свой потенциал с точки зрения перспективы дальнейшего обучения в классах технологического или естественнонаучного профиля.
Тип материала: | Документ Microsoft Word (doc) |
---|---|
Размер: | 234 Kb |
Количество скачиваний: | 11 |