Рабочая программа по математике 9 класс УМК А.Г.Мордковича

Предмет: Математика
Категория материала: Рабочие программы
Автор:

Рабочая программа    по математике составлена на основе следующих нормативно-правовых документов:

1.Федеральный компонент государственного стандарта основного общего образования по математике, утвержден приказом Минобразования России от 05.03.2004 г. №1089;

2.Программы по математике  для общеобразовательных школ, гимназий, лицеев: Математика 5-11 кл./ Г. М. Кузнецова, Н. Г. Миндюк- М. Дрофа, 2009 г.,  рекомендованной Департаментом образовательных программ и стандартов общего образования Министерства образования Российской Федерации.

       Рабочая программа ориентирована  на использование учебника: А.Г. Мордкович «Алгебра». 9 класс.  «Мнемозина», 2009 г и задачника А.. Г. Мордкович, Т. Н.,  Мишустина, Е. Е. Тульчинская,, «Алгебра». 9 класс.   «Мнемозина», 2009 г.

       

   Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило

цели обучения математики:

• формирование представлений о математике как универсальном языке науки, средства моделирования явлений и процессов, об идеях и методах математики;
• развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
• овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
• воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики.
На основании требований Государственного образовательного стандарта 2004 г. в
содержании календарно-тематического планирования предлагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельный подходы, которые определяют задачи программы:
• приобретения математических знаний и умений;
• овладение обобщенными способами мыслительной, творческой деятельностей;
• освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.
С учетом возрастных особенностей классов выстроена система учебных занятий
(уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты). Требования к результатам обучения конкретизированы, даны в деятельной формулировке и последовательности их изложения. Конкретно сформулированные требования позволяют спланировать виды учебной деятельности, что обеспечит усвоение учебного материала на уровне требований Государственного стандарта. В планировании приведены примерные измерители достижения требований к уровню подготовки. Планируется использование новых педагогических технологий в преподавании предмета.
В пояснительных записках программ указан достаточно полный перечень учебной и учебно-методической литературы для обучающихся и учителей.
Календарно-тематические планы рекомендуется рассматривать, как ориентировочные. Они предполагают творческое их использование в отношении распределения учебного материала и времени на изучение различных тем, последовательности их рассмотрения, замены или привлечения дополнительного материала, выбора форм, методов, приемов обучения, видов самостоятельной деятельности в рамках требований Государственного стандарта математического образования.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развивались на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
 - развить представление о числе и роли вычислений в человеческой практике;

- сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
 - изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
 - развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
 - получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
 - сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
В ходе преподавания математики в основной школе следует обратить
внимание на овладение умениями общеучебного характера, разнообразными способами деятельности, приобретение опыта:
• планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов.
• решение разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска путей и способов решения.
• исследовательской деятельности, развитие идей, проведение экспериментов, обобщения, постановки и формулирования новых задач.
• ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства.
• проведение доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования.
• поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

С учетом уровневой специфики класса выстроена система учебных занятий, спроектированы цели, задачи, планируемые результаты обучения.
Основой целеполагания является обновление требований к уровню подготовки школьников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта— переход от суммы «предметных результатов» к «межпредметным результатам». Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса математики.
Дидактическая модель обучения и педагогические средства отражают модернизацию основ учебного процесса, их переориентацию на достижение конкретных результатов в виде сформированных умений и навыков учащихся, обобщенных способов деятельности. Формирование целостных представлений о математике будет осуществляться в ходе творческой деятельности учащихся на основе личностного осмысления математических фактов и явлений. Особое внимание уделяется познавательной активности учащихся, их мотивированности к самостоятельной учебной работе. Это предполагает все более широкое использование нетрадиционных форм уроков, в том числе методики деловых и ролевых игр, проблемных дискуссий, межпредметных интегрированных уроков и т. д.
На ступени основной школы задачи учебных занятий определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы, аксиомы.
При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.
Учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач формулировать проблему и цели своей работы, определять адекватные способы и методы решения задачи, прогнозировать ожидаемый результат и сопоставлять его с собственными математическими знаниями. Учащиеся должны научиться представлять результаты индивидуальной и групповой познавательной деятельности в формах конспекта, реферата, рецензии.
Реализация календарно-тематического плана обеспечивает освоение общеучебных умений и компетенций в рамках информационно-коммуникативной деятельности:
• создание условия для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки, ясно, точно и грамотно выражать свои мысли в устной и письменной речи.
• формирование умения использовать различные языки математики, свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства, интегрирования в личный опыт новую, в том числе самостоятельно полученную информацию;
• создание условия для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность, использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
На уроках учащиеся могут более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль, формулировать выводы.
Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, Интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема, аудиовизуальный ряд и др.).
Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается простейшее использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.
  Стандарт ориентирован на воспитание школьника — гражданина и патриота России, развитие духовно-нравственного мира школьника, его национального самосознания. Эти положения нашли отражение в содержании уроков. В процессе обучения должно быть сформировано умение формулировать свои мировоззренческие взгляды и на этой основе - воспитание гражданственности и патриотизма.
  Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится 175 ч ( 5 часов в неделю) При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, геометрии.

                         

                                 Общая характеристика учебного предмета

    Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как  языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит  вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации,  и закладываются основы вероятностного мышления.

 

Предполагаемые результаты.

В результате изучения математики в 9 классе обучающийся должен

Знать/понимать

существо понятия математического доказательства; приводить примеры доказательств;

существо понятия алгоритма; приводить примеры алгоритмов;

вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач.

Уметь

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

решать линейные и квадратные неравенства с одной переменной и их системы;

решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

изображать числа точками на координатной прямой;

определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

описывать свойства изученных функций, строить их графики;

пользоваться геометрическим языком для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

расчетов, включающих простейшие тригонометрические формулы;

решения геометрических задач с использованием тригонометрии

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

 

 

                                      Система оценки достижений учащихся.

 

Знания учащихся оценивается по пятибалльной  системе. По завершению темы(раздела) проводится  контрольная работа. Количество контрольных работ в 9 классе- 9  .

 

                            Инструментарий для оценивания результатов.

Устный опрос, письменные задания(тесты и задачи)

 

 

 

 

 

Тип материала: Документ Microsoft Word (docx)
Размер: 55.25 Kb
Количество скачиваний: 5
Просмотров: 78

Похожие материалы