Тесты по геометрии для подготовки к ОГЭ (9 класс)
Предмет:
Математика
Категория материала:
Тесты
Автор:
Коковина Татьяна Леонидовна
Здесь была ссылка на работу Тесты по геометрии для подготовки к ОГЭ (9 класс) автора Коковина Татьяна Леонидовна.
Ссылка на нее удалена по требованию посредника Инфоурок.
Если вы являетесь автором этой работы и хотите подтвердить её публикацию на этом сайте,
.
Тесты по геометрии для подготовки к ОГЭ содержит задания из первой части.
Все они составлены по аналогии с заданием № 13. В них надо отметить верные (неверные) утверждения.
Файл содержит три теста по десять заданий.
В каждом задании предложены четыре утверждения.
Тест можно использовать в электронном или бумажном вариантах.
Он не содержит утверждения по темам:
" Векторы. Скалярное произведение векторов",
"Метод координат",
"Правильные многоугольники"(исключение 2 утверждения - простые),
"Начальные сведения стереометрии".
Пример.
Тест 13-04
1. Укажите верные утверждения.
Медиана, проведенная к гипотенузе, равна радиусу описанной около этого треугольника окружности. Точка пересечения высот треугольника является центром описанной около него окружности. Внешний угол треугольника равен сумме двух внутренних углов этого треугольника. Центры вписанной и описанной окружностей равностороннего треугольника совпадают. 2. Укажите верные утверждения.
Если при пересечении двух прямых третьей прямой соответственные углы равны 550, то две прямые параллельны. Любые три прямые имеют не менее одной общей точки. Если точка равноудалена от сторон угла, то она лежит на биссектрисе этого угла. Сумма углов четырехугольника равна 360 градусов. 3. Укажите верные утверждения.
Диагонали параллелограмма делят его углы пополам. Длина медианы прямоугольного треугольника, проведённой к гипотенузе, равна половине длины гипотенузы. Смежные углы равны 180 градусов. В прямоугольном треугольнике катеты равны половине гипотенузы. 4. Укажите верные утверждения.
В треугольнике не может быть больше одного тупого угла. Длина любой хорды окружности не превосходит её радиуса. Площадь ромба равна половине произведения его диагоналей. Если две прямые перпендикулярны третьей прямой, то эти две прямые перпендикулярны. 5. Укажите верные утверждения.
Если сторона и два угла одного треугольника соответственно равны стороне и двум углам другого треугольника, то треугольники равны. Площадь ромба меньше произведения его диагоналей. В равнобедренном треугольнике имеется не более двух равных углов. Если две стороны прямоугольного треугольника равны 3 и 5, то его третья сторона равна 4. 6. Укажите верные утверждения.
Синус любого острого угла прямоугольного треугольника меньше 1. Если диагонали четырехугольника точкой пересечения делятся пополам, то это параллелограмм. Биссектрисы углов трапеции прилегающих к боковой стороне - перпендикулярны. Отношение периметров подобных треугольников равно половине коэффициента подобия. 7. Укажите верные утверждения.
Если катет одного прямоугольного треугольника равен катету другого прямоугольного треугольника, то такие треугольники равны. Если все стороны треугольника меньше 1, то и все его высоты меньше 1. В треугольнике АВС, для которого АВ=6, ВС=8, АС=10, угол В— наибольший. В треугольнике против большего угла лежит большая сторона. 8. Укажите верные утверждения.
Если треугольник АВС тупоугольный, то его высоты не пересекаются в одной точке. Косинус 60 градусов равен 1/2. Если два угла треугольника равны 30 градусов и 70 градусов , то внешний угол этого треугольника равен 100 градусам. Треугольник со сторонами 5, 6, 3 существует. 9. Укажите верные утверждения.
Площадь треугольника меньше произведения двух его сторон. В прямоугольном треугольнике квадрат высоты, проведенный из вершины прямого угла, равен произведению его катетов. Противоположные углы параллелограмма равны. Если в параллелограмме высоты, проведенные из вершины тупого угла равны, то это ромб. 10. Укажите верные утверждения.
Если расстояние между центрами двух окружностей равно сумме их радиусов, то эти окружности касаются. Если расстояние между центрами окружностей равно разности их радиусов, то эти окружности касаются. Если радиусы двух окружностей равны 6 и 9, а расстояние между их центрами равно 2, то эти окружности не имеют общих точек. В любой параллелограмм можно вписать окружность.
Тип материала:
Документ Microsoft Word (docx)
Размер:
140.71 Kb
Количество скачиваний:
295
Просмотров: 350
Похожие материалы
Учебно-методические пособия и материалы для учителей , 2015-2023
Все материалы взяты из открытых источников сети Интернет. Все права принадлежат авторам материалов.
По вопросам работы сайта обращайтесь через форму обратной связи .
Политика Конфиденциальности сайта uroki.me