Урок по алгебре в 8 классе на тему "Теорема Виета"
Предмет: | Математика |
---|---|
Категория материала: | Рабочие программы |
Автор: |
Мирзамедова Ирана Смаиловна
|
ДАТА: 02.12 КЛАСС: 8 в ПРЕДМЕТ: АЛГЕБРА
УРОК № 39
ТЕМА: Теорема Виета
Цели:
1.изучение, формирование и первичное закрепление новых знаний, умений и навыковпо теме Теорема Виета; формировать умение применять теорему Виета и обратную ей теорему при решении приведённых квадратных уравнений
2.развитие умения анализировать, сравнивать, выделять главное, применять знания на практике
3.воспитание культуры умственного труда, дисциплинированности, пунктуальности, аккуратности и ответственности.
Тип урок - урок изучения нового материала
Вид урока - комбинированный
Прогнозируемый результат
Знать: основные понятия и определения по указанной теме
Уметь: применять полученные знания на практике
Оборудование урока: учебник, доска, дидактический, раздаточный материал.
ПЛАН УРОКА.
1.Организация начала урока. Подготовка учащихся к работе на уроке. Постановка целей урока.
2. Подготовка к основному этапу урока, к активному усвоению нового учебного материала. Актуализация опорных знаний и умений. Вопросно-ответная беседа
3.Усвоение новых знаний и способов действий. Объяснение нового материала.
4.Первичная проверка понимания учащимися нового материала. Установление правильности и осознанности усвоения нового материала, выявление пробелов и неверных представлений и их коррекция
5.Закрепление знаний и способов действий на уровне применения в знакомой ситуации.
6.Подведение итогов урока. Анализ и оценка успешности достижения цели и наметить перспективу последующей работы. Рефлексия.
7.Информация о домашнем задании. Обеспечения понимания цели, способов выполнения домашнего задания. Проверка соответствующих записей.
ХОД УРОКА
II. Устная работа.
1. Назовите полные, неполные и приведённые квадратные уравнения:
а) 3х2 – 2х = 0; е) –21х2 + 16х = 0;
б) 7х2 – 16х + 4 = 0; ж) х2 = 0;
в) х2 – 3 = 0; з) х2 + 4х + 4 = 0;
г) –х2 + 2х – 4 = 0; и) х2 = 4;
д) 2 – 6х + х2 = 0; к) –7х2 + 6 = 0.
2. Преобразуйте квадратное уравнение в приведённое:
а) 3х2 + 6х – 12 = 0; г) х2 + х – 2 = 0;
б) 2х2 = 0; д) 3х2 – 7 = 0;
в) –х2 – 2х + 16 = 0; е) –5х2 + 10х – 2 = 0.
III. Объяснение нового материала.
Объяснение проводится в н е с к о л ь к о э т а п о в.
1. «О т к р ы т и е» теоремы Виета.
Целесообразно организовать лабораторную исследовательскую работу. Для этого разбить класс на пять групп, каждой из которых дать решить приведённое квадратное уравнение. После его решения один представитель от каждой группы выходит к доске и заполняет соответствующую строку в таблице:
После этого учитель предлагает учащимся сравнить сумму и произведение полученных корней с коэффициентами b и c и выдвинуть гипотезу. Учитель подтверждает сделанное предположение, сообщая, что данное утверждение называется теоремой Виета, обращая внимание учащихся, что эта теорема справедлива для приведенных квадратных уравнений.
Можно привести краткий исторический материал о жизни и деятельности Франсуа Виета.
Рассмотреть доказательство теоремы можно как по учебнику (с. 127– 128), так и привлекая учащихся, поскольку оно не является сложным. После доказательства на доску выносится запись:
Для первичного усвоения теоремы Виета можно предложить учащимся выполнить устно упражнение на нахождение суммы и произведения корней квадратного уравнения:
1) № 580 (а, б, в, г) – устно.
2) х2 – х – 5 = 0.
3) х2 + 3х + 5 = 0.
При выполнении этого задания необходимо предотвратить формальное применение теоремы Виета. Нужно убедиться, что квадратное уравнение имеет корни. Если учащиеся сами не выскажут эту мысль, то при решении третьего задания предложить им найти дискриминант уравнения и сделать соответствующий вывод.
2. Т е о р е м а В и е т а для неприведённого квадратного уравнения.
При выполнении устной работы в начале урока учащиеся вспомнили, как преобразовать квадратное уравнение в приведённое. Следует предложить им самостоятельно вывести формулы для неприведённого квадратного уравнения, используя теорему Виета. После этого на доску выносится запись:
3. Т е о р е м а, обратная теореме Виета.
Обращаем внимание учащихся, что по теореме Виета мы можем только убедиться в правильности нахождения корней с помощью дискриминанта. Возникает вопрос, а если мы подберем такие числа, которые в сумме будут равны второму коэффициенту с противоположным знаком, а в произведении – свободному члену, то не будут ли они являться корнями уравнения? Подчеркиваем, что мы хотим воспользоваться утверждением, обратным теореме Виета, значит, мы должны его доказать. Работа с теоремой Виета и обратной ей теоремой позволяет формировать элементы математической культуры учащихся.
После рассмотрения (по учебнику) доказательства теоремы привести примеры нахождения корней квадратного уравнения подбором.
IV. Формирование умений и навыков.
Все упражнения, выполняемые на этом уроке, можно разбить на две группы:
1-я г р у п п а. Упражнения на непосредственное применение теоремы Виета.
2-я г р у п п а. Упражнения на нахождение подбором корней приведённого квадратного уравнения.
1. № 147 – устно.
2. № 148 у доски
3. Решите квадратное уравнение по формуле и сделайте проверку, используя теорему Виета:
а) х2 + 7х – 8 = 0; в) х2 – 4х – 5 = 0;
б) х2 – 5х – 14 = 0; г) х2 + 8х + 15 = 0.
4. № 150
5. Найдите подбором корни уравнения:
а) х2 – 11х + 28 = 0; г) х2 + 3х – 28 = 0;
б) х2 + 11х + 28 = 0; д) х2 + 20х + 36 = 0;
в) х2 – 3х – 28 = 0; е) х2 + 37х + 36 = 0.
V. Проверочная работа.
Каждое из следующих уравнений имеет по два корня: х1 и х2. Не находя их, найдите значение выражений х1 + х2 и х1х2:
В а р и а н т 1
а) х2 – 7х – 9 = 0; в) 5х2 – 7х = 0;
б) 2х2 + 8х – 19 = 0; г) 13х2 – 25 = 0.
В а р и а н т 2
а) х2 + 8х – 11 = 0; в) 4х2 + 9х =0;
б) 3х2 – 7х – 12 = 0; г) 17х2 – 50 = 0.
VI. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Сформулируйте теорему Виета.
– Что необходимо проверить, прежде чем находить сумму и произведение корней приведённого квадратного уравнения?
– Как можно применить теорему Виета для неприведённого квадратного уравнения?
– В чём состоит теорема, обратная теореме Виета? Когда она применяется?
Домашнее задание: № 149, 153
Д о п о л н и т е л ь н о: найти подбором корни уравнения:
а) х2 – 12х + 27 = 0; в) х2 + 9х – 36 = 0;
Тип материала: | Документ Microsoft Word (docx) |
---|---|
Размер: | 315.91 Kb |
Количество скачиваний: | 33 |