Научно-исследовательская работа по физике « Влияние ультрафиолетового излучения на яичный белок».

Предмет: Физика
Категория материала: Другие методич. материалы
Автор:

Тема: « Влияние ультрафиолетового излучения на яичный белок».

Оглавление

III Подготовительная работа

1. Практическая работа

а) измерение силы тока, напряжения и сопротивления яичного белка

б) определение длины и площади образца яичного белка.

в) вычисление удельного сопротивления яичного белка

IV Заключение стр. 7

V Библиографический список стр. 9


Введение

Проблема влияния ультрафиолетового излучения (УФИ) на живые организмы вызывает непреходящий интерес в связи с тем. Что ультрафиолетовое излучение является естественным экологическим фактором, участвующим в эволюции всех жизненных форм на земле. Ультрафиолетовые лучи - это электромагнитные волны с длиной волны меньше, чем у фиолетового света. Ультрафиолетовые лучи невидимы, но действие их на сетчатку глаза и кожу велико и разрушительно. Ультрафиолетовое излучение солнца недостаточно поглощается верхними слоями атмосферы. Поэтому высоко в горах нельзя длительное время оставаться без темных очков и без одежды.

В малых дозах ультрафиолетовые лучи оказывают целебное действие. Умеренное пребывание на солнце полезно: ультрафиолет способствует росту и укреплению организма. Кроме прямого действия на кожу, ультрафиолетовые лучи оказывают влияние на центральную нервную систему, стимулируя ряд важных жизненных функций организма.

Ультрафиолетовые лучи, наконец, обладают и бактерицидным действием. Они убивают болезнетворные бактерии и используются с этой целью в медицине.

Ультрафиолетовое излучение солнца и искусственных источников по рекомендации II Международного конгресса по физиотерапии и фотобиологии (1932г) разделяется на три области: А-400-320 нм; В- 320-275 нм; С-275-180 нм. В действии каждого из этих диапазонов на живые организмы есть существенные различия. Наибольшая биологическая активность свойственна коротковолновому ультрафиолетовому излучению (С-диапазону).

К счастью в солнечном излучении из-за эффективного поглощения озоном атмосферы коротковолновой ультрафиолетовое излучение не достигает поверхности Земли. Другое дело при искусственной соляризации ртутно-кварцевыми лампами коротковолновая часть спектра неизменно присутствует, т.к. резонансная линия излучения паров ртути имеет длину волны 250 нм Действие ультрафиолетовых лучей на кожу.

Жаркий летний день, яркое Солнце, безоблачное синее небо, берег реки. Вы лежите, подставив Солнцу свое тело. Проходят минуты блаженного полузабытья; ласкающие прикосновения солнечных лучей расслабляют мышцы, снимают ощущение усталости. Нагретые Солнцем участки кожи становятся розоватыми, горячими на ощупь. Это покраснение (калорическая эритема) появляется в результате нагрева кожи видимыми и инфракрасными лучами Солнца и прилива к ней крови. Оно исчезает почти сразу же после прекращения солнечной ванны.

Однако через 2—8 ч снова появляется покраснение кожи вместе с ощущением жжения. Это уже ультрафиолетовая эритема, отличающаяся от калорической некоторыми особенностями. Появляется она после скрытого периода, в пределах облученного участка кожи и сменяется загаром и шелушением. Длительность такой эритемы — от 10—12 ч до 3—4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной.

По существу эритема представляет собой воспалительную реакцию, ожог кожи. Но это воспаление особое — безмикробное, асептическое. Если доза лучей слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи (эпидермис), образует пузыри. В тяжелых случаях появляются участки омертвения, некроза эпидермиса. Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих пигмент, загар бледнеет. Однако полностью он не исчезает через несколько недель и даже месяцев. Такова картина ультра фиолетовой эритемы, если ее наблюдать простым глазом.

Кожный покров, или эпидермис человека, состоит из большого количества клеточных слоев и имеет толщину 0,5 мм (рис. 17). Его назначение — защищать организм от повреждений, колебаний температуры, давления, служить барьером на пути инфекции. Наиболее глубокий зародышевый слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В зародышевом слое идет непрерывный процесс размножения клеток; более старые оттесняются наружу молодыми клетками и отмирают. Пласты мертвых и умирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,3 мм, который все время слущивается снаружи и восстанавливается изнутри.

Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они, естественно, не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче волна ультрафиолетовых лучей, тем меньше их проникающая способность. Лучи короче 3100 А не проникают глубже эпидермиса. Более длинноволновые лучи достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Значит, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе. Именно здесь начинается сложная цепь биохимических и физиологических сдвигов в организме, вызываемых ультрафиолетовой радиацией.

Самые большие изменения происходят в зародышевом слое эпидермиса, где поглощается основное количество ультрафиолетовых лучей. Процессы фотолиза и денатурации биополимеров приводят к гибели шиповидных клеток зародышевого слоя. Активные продукты фотолиза белков (гистамин, гистаминоподобные вещества, ацетилхолин и др.) вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы. Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается.

От состояния нервной системы зависит степень выраженности эритемы и даже возможность ее образования. Советские ученые (С. А. Бруштейн, А. Е. Щербак, А. Р. Киричинский, Г. С. Варшавер и др.) установили, что при ранениях, перерезках нервов, их воспалениях, при обморожениях эритема на соответствующих участках кожи либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Сон, наркоз, алкогольное опьянение, физическое и умственное утомление, заболевания угнетают образование эритемы. Поэтому эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза.

Первое научное описание эритемы дал в 1889 г. русский ученый А. Н. Маклаков, который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины. Слизистая оболочка глаза — конъюнктива — не имеет защитного рогового слоя, поэтому она более чувствительна к облучению, чем кожа. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток конъюнктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение — катаракту.

В 1899 г. датский ученый Н. Финзен впервые применил ультрафиолетовые лучи для лечения некоторых болезней. Позже были подробно изучены и другие проявления действия этих лучей на организм, особенности эффекта, вызываемого разными участками ультрафиолетового спектра. Оказывается, эритему можно вызвать лучами двух разных спектральных областей. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 2970 А. К лучам с меньшей и большей длиной волны эритемная чувствительность кожи снижается. Но с помощью искусственных источников излучения эритему удалось вызвать также лучами в 2500—2550 А. Лучи с длиной волны 2537 А дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах.

Таким образом, кривая эритемной чувствительности кожи имеет двугорбый вид. Седловина между двумя максимумами не случайна — она образовалась за счет экранирующего, поглощающего действия рогового слоя кожи. Если удалить (осторожно срезать) отмершие слои ороговевших клеток, то лучи с длиной волны 2700—2800 А также вызывают в этом участке кожи покраснение, повышение температуры, легкую болезненность, отечность и другие признаки эритемы.Одно из средств защиты организма от перегревания — прилив крови к коже, расширение кожных сосудов. При этом увеличивается температура кожи и теплоотдача путем излучения (в инфракрасной области спектра), а также путем конвекции (нагрева прилегающего к коже слоя воздуха). Но если воздух и окружающие предметы сами имеют высокую температуру, вступает в действие еще один механизм отдачи тепла — испарение за счет потоотделения.

Все эти механизмы терморегуляции предназначены для защиты исключительно от видимых и инфракрасных лучей Солнца. Но большое количество ультрафиолета также опасно, и потому у человека одновременно с потоотделением включается и механизм защиты от ультрафиолетовых лучей. Пот, оказывается, содержит урокановую кислоту — вещество, хорошо поглощающее эти лучи благодаря наличию в его молекулах бензольного кольца.

В естественных условиях солнечного освещения вслед за эритемой развивается пигментация кожи, загар. Спектральный максимум пигментации (3400 А) не совпадает ни с одним из пиков эритемной чувствительности. Подбирая источник излучения, можно вызвать пигментацию без эритемы и наоборот.Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявления разных, связанных друг с другом процессов. Кожный пигмент меланин образуется в клетках самого нижнего слоя эпидермиса — меланобластах. Исходным материалом для образования меланина служат аминокислоты тирозин, диоксифенилаланин, а также продукты распада адреналина. Ультрафиолетовые лучи ускоряют образование и накопление меланина.

Каков смысл загара, накопления меланина, если исходить из интересов организма? Он защищает клетки дермы, расположенные в ней сосуды и нервы от длинноволновых ультрафиолетовых, а также от видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар.

Для защиты от ультрафиолетовых лучей большое значение имеет утолщение рогового слоя эпидермиса. Через один — три дня после образования эритемы в зародышевом слое эпидермиса начинается усиленное деление клеток. Эпидермис утолщается, количество слоев клеток увеличивается; через такой барьер ультрафиолетовым лучам проникнуть труднее. Если облучение повторяется, роговой слой продолжает утолщаться. Вот почему загоревшая кожа груба и шершава на ощупь.Природа использовала энергию ультрафиолетовых лучей для того, чтобы вызвать в организме защитную реакцию не только против этих лучей, но и против других лучей, входящих в состав солнечного спектра,— видимых и инфракрасных.Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, красная часть, проникают в ткани гораздо глубже, чем ультрафиолетовые лучи,— на глубину до 3—4 мм. Не пропустить эти лучи в глубь тела, защитить от перегрева нежные и привыкшие к постоянству температуры внутренние органы — вот одна из задач, с которыми великолепно справляется меланин. Гранулы темно-коричневого, почти черного пигмента поглощают в широкой области спектра.

Меланин — основной пигмент тела человека. Он придает окраску не только загоревшей коже, но и волосам, ресницам, радужной оболочке глаз. Меланин содержится и в пигментном слое сетчатки глаза, участвует в восприятии света.

Исходный продукт для образования меланина — аминокислота тирозин, которая под влиянием фермента тирозиназы окисляется в диоксифенилаланин. Присутствие фермента совершенно необходимо для образования меланина. Генетический дефект, сопровождающийся нарушением продукции тирозиназы, проявляется в отсутствие пигментации. Люди с таким дефектом имеют белые волосы, ресницы и розовые глаза (через радужную оболочку, лишенную пигмента, просвечивают кровеносные сосуды), носят название альбиносов. Отсутствие меланина не слишком беспокоит их. Однако против солнечных лучей они беззащитны. Пребывание под прямыми лучами Солнца означает для них ожоги, волдыри и даже некрозы.Но меланин — не просто пигмент, не пассивный защитный экран, отгораживающий ткани и внутренние органы от не в меру горячих лучей Солнца. Меланин — необыкновенное вещество, защитные функции которого в организме значительно шире и сложнее. Когда кванты ультрафиолетовых лучей поглощаются молекулами белков, нуклеиновых кислот и других органических соединений, один из вероятных результатов такой встречи — распад и расщепление молекул. Осколки разрушенных молекул, обладающие высокой биохимической активностью, носят название ионов, если они несут электрический заряд, и свободных радикалов, если они обладают неспаренным электроном, свободной валентностью. Свободные радикалы реагируют с молекулами белков и нуклеиновых кислот, дополняя и усиливая их непосредственное повреждение, порождают лавинообразно нарастающий процесс, подобный цепной реакции распада ядер урана, возбуждаемой потоком нейтронов. Остановить эту цепную реакцию — значит ослабить повреждающее действие излучения, предотвратить его опасные для здоровья последствия.

И с этой задачей меланин справляется великолепно. Молекулы меланина, образующиеся в результате окислительной конденсации тирозина, диоксифенилаланина, пирокатехина — это огромные полимерные молекулы с сетчатой структурой. В процессе окисления предшественников меланина также образуются свободные радикалы, так называемые семихиноны. Большинство из них, соединяясь, взаимно нейтрализуется, но часть сохраняет неспаренные электроны и в составе молекулы меланина. На вооружении современной науки состоит метод электронного парамагнитного резонанса (ЭПР), позволяющий обнаруживать присутствие свободных радикалов. С помощью этого метода удалось показать, что гигантские сетчатые молекулы меланина обладают свойствами стабильных свободных радикалов. Более того, в звеньях этой сети легко «застревают», связываются, нейтрализуются другие свободные радикалы.Подобно чудесному защитному покрову, сетчатые молекулы меланина задерживают и обезвреживают активные, сильнодействующие осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь, во внутренние среды организма. И эта защитная функция меланина не менее важна, чем поглощение тепловых лучей. Статистика бесстрастно утверждает, что рак кожи у лиц с сильно пигментированной кожей при равных условиях освещения Солнцем развивается примерно в 10 раз реже, чем у белых. Заслуга меланина здесь несомненна.

В природе существуют излучения, гораздо более высокоэнергетичные и сильнодействующие, чем ультрафиолетовое,— это рентгеновские и гамма-лучи. При их взаимодействии с живыми тканями свободные радикалы и ионы образуются значительно чаще и в больших количествах, чем при освещении кожи Солнцем. К тому же гамма-лучи проникают в тело человека на всю его глубину, и процесс расщепления молекул не ограничивается только кожей. Опасность повреждения органов и тканей свободными радикалами в этом случае неизмеримо больше, чем при освещении ультрафиолетом. Меланин кожи в этих условиях не может полностью выполнить свою защитную роль, так как не в силах задержать глубоко проникающее излучение. Но если большие молекулы меланина перевести в растворимое состояние (обработав его слабой Щелочью) и затем ввести в кровь, разрушительное действие ядерных излучений будет заметно ослаблено. Так защитные свойства меланина находят и новые, столь же важные и полезные применения.

Цель нашей работы заключается в следующем: рассмотреть влияние ультрафиолетового излучения на сопротивление яичного белка. ,

Для решения данного вопроса проводилось измерение вольтамперной характеристики облучённых и необлучённых образцов однодневного яичного белка.

Для достижения цели были поставлены следующие задачи:

1. Определить сопротивление яичного белка, так как жизнеспособность тканей определяется сопротивлением.

2. Определить сколько времени белок остается жизнеспособным под влиянием ультрафиолетового излучения.

3. Пронаблюдать изменений относительного сопротивления белка от времени вылежки.

4.По возможности выделить наиболее чувствительную часть белка, то есть, на какой тип аминокислот сильнее влияет ультрафиолетовое излучение.

II Основная часть

В данной работе приведены результаты экспериментального воздействия ультрафиолетового излучения на электрическое сопротивление яичного белка. Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов (напряжение) на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Единицы и размерности

Размерность электрического сопротивления в СИ: В международной системе единиц (СИ) единицей сопротивления является Ом

Физика явления

Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.

В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

Сопротивление однородного проводника также зависит от температуры.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения. Удельное сопротивление металлического проводника зависит от

концентрации свободных электронов в проводнике;

интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;

интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры.

Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — "нихрома". Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.

Литература

Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.

Сопротивление человека

Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм[5]. Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейно по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.

Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц

Метрологические аспекты

Приборы для измерения сопротивления (постоянного тока)

Омметр

Измерительный мост

Комбинированные приборы (мультиметры, универсальные вольтметры и т. д.)

Средства воспроизведения сопротивления

Магазин сопротивлений - набор резисторов

Катушки электрического сопротивления

Для проведения эксперимента изготавливались образцы из однодневного яичного белка, состоящего в основном из яичного альбумина-67%. Облучение ультрафиолетовыми лучами проводилось с помощью ртутно-кварцевой лампы «ДРТ-400» в специальных кварцевых кюветах. Время облучения было различно и варьировалось от 10-бОсек (малые времена облучения) и от 20 до 10 минут - большие времена облучения. Далее методом вольтамперных характеристик измерялось электрическое сопротивление на характериографе типа 1575(ТК-4805)через определенные промежутки времени: от 50 до 60 минут, и так до 22 суток. Одновременно проводилось измерение контрольных образцов, не подвергавшихся ультрафиолетовому излучению. На одной из серий контрольных образцов измерялась температурная зависимость сопротивления в интервале от 0 до 60 °С. На рис.1 представлены кинетические кривые удельного сопротивления для малых и больших времен облучения. Как показано, чем больше время облучения, тем быстрее происходит спад или уменьшение сопротивления. Причем, если время облучения меньше трех минут, то даже через четверо суток возможно восстановление сопротивления белка до прежнего значения. При большем времени облучения такого не происходит.

Опыт№1 Строение яйца

Строение яйца птиц соответствует его назначению — оно содержит всё необходимое для развития нового организма. Питание зародыша обеспечивает желток. Существует два типа желтка — белый и жёлтый, они находятся в яйце чередующимися концентрическими слоями. Желток заключён в вителлиновую мембрану и окружён белком. Содержимое яйца окружено двумя подскорлупковыми оболочками, внутренней и наружной. Снаружи находится скорлупа, состоящая главным образом из карбоната кальция. После откладки яйца на его тупом конце постепенно образуется воздушная камера[3].

1. Скорлупа

Тип материала: Документ Microsoft Word (docx)
Размер: 91.81 Kb
Количество скачиваний: 8
Просмотров: 92

Похожие материалы