Презентации по физике 7-11 кл.

Предмет: Физика
Категория материала: Презентации
Автор:

Рабочая программа

по учебному предмету  «Физика 7-9»

(базовый уровень)

 

                                                                                        Учитель высшей квалификационной категории Горбушин Н.Н.

 

2012 год

 

 

Пояснительная записка

 

Рабочая программа по физике составлена на основе примерной программы основного общего образования по физике для 7-9 классов (подготовили: В.О. Орлов, О.Ф. Кабардин, В.А. Коровин, А.Ю. Пентин, Н.С. Пурышева, В.Е. Фрадкин) и авторской программы (авторы: Е.М. Гутник, А.В. Пёрышкин), составленной в соответствии с новым, утверждённым в 2004 г. федеральным компонентом государственного стандарта основного общего образования по физике.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.

Структура документа

Рабочая программа по физике включает три раздела: пояснительную записку; основное содержание с распределением учебных часов по разделам курса и последовательностью изучения тем и разделов; требования к уровню подготовки выпускников.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве  учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов  школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики

Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:

    освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

    овладение умениямипроводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

    развитиепознавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

    воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

    использование полученных знаний и уменийдля решения практических задач повседневной жизни, для обеспечения безопасности  своей жизни, рационального природопользования и охраны окружающей среды.

 

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 204 часа для обязательного изучения физики на ступени основного общего образования. В том числе в 7, 8 и 9 классах по 68 учебных часов из расчета 2 учебных часа в неделю.

Количество плановых контрольных работ 12 (3 - 7 кл, 7 - 8 кл, 2 - 9 кл)

Количество плановых лабораторных работ 37 (14 – 7 кл, 14 – 8 кл, 9 – 9 кл)

 

Общеучебные умения, навыки и способы деятельности

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

·       использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;

·       формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;

·       овладение адекватными способами решения теоретических и экспериментальных задач;

·       приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

·       владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;

·       использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

·       владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:

·       организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

 

Основное содержание (204 часа)

Физика и физические методы изучения природы

Физика — наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц.  Физический эксперимент и физическая теория. Физические модели. Роль математики в развитии физики. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторные работы и опыты

Определение цены деления шкалы измерительного прибора.[1]Измерение длины. Измерение объема жидкости и твердого тела.

Измерение температуры.

Механические явления

Механическое движение. Относительность движения. Система отсчета.  Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.

Неравномерное движение.  Мгновенная скорость. Ускорение.  Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени.

Равномерное движениепо окружности. Период и частота обращения.

Явление инерции. Первый закон Ньютона. Масса тела. Плотность вещества. Методы измерения массы и плотности.

Взаимодействие тел. Сила. Правило сложения сил.

Сила упругости. Методы измерения силы.

Второй закон Ньютона. Третий закон Ньютона.

Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Вес тела. Невесомость. Геоцентрическая и гелиоцентрическая системы мира.

Сила трения.

Момент силы. Условия равновесия рычага. Центр тяжести тела. Условия равновесия тел. 

Импульс. Закон сохранения импульса. Реактивное движение.

Работа. Мощность. Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии.  Простые механизмы. Коэффициент полезного действия. Методы измерения энергии, работы и мощности.

Давление. Атмосферное давление. Методы измерения давления. Закон Паскаля. Гидравлические машины. Закон Архимеда. Условие плавания тел.

Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников.

Механические волны. Длина волны. Звук.

Демонстрации

Равномерное прямолинейное движение. Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Явление инерции. Взаимодействие тел. Зависимость силы упругости от деформации пружины. Сложение сил. Сила трения. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение. Изменение энергии тела при совершении работы. Превращения механической энергии из одной формы в другую. Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром - анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда. Простые механизмы. Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторные работы и опыты

Измерение скорости равномерного движения. Изучение зависимости пути от времени при равномерном иравноускоренном движении. Измерение ускорения прямолинейного равноускоренного движения. Измерение массы. Измерение плотности твердого тела.

Измерение плотности жидкости. Измерение силы динамометром. Сложение сил, направленных вдоль одной прямой.

Сложение сил, направленных под углом. Исследование зависимости силы тяжести от массы тела. Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины. Исследование силы трения скольжения. Измерение коэффициента трения скольжения. Исследование условий равновесия рычага. Нахождение центра тяжести плоского тела. Вычисление КПД наклонной плоскости. Измерение кинетической энергии тела. Измерение изменения  потенциальной энергии  тела. Измерение мощности. Измерение архимедовой силы. Изучение условий плавания тел. Изучение зависимости периода колебаний маятника от длины нити. Измерение ускорения свободного падения с помощью маятника. Изучение зависимости периода колебаний груза на пружине от массы груза.

Тепловые явления

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия.  Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Тепловое движение. Тепловое равновесие. Температура и ее измерение. Связь температуры со средней скоростью теплового хаотического движения частиц.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах. Необратимость процессов теплопередачи.

Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение. Зависимость температуры кипения от давления.  Плавление и кристаллизация. Удельная теплота плавления и парообразования. Удельная теплота сгорания. Расчет количества теплоты при теплообмене.

Принципы работы тепловых двигателей. Паровая турбина. Двигатель внутреннего сгорания. Реактивный двигатель. КПД теплового двигателя. Объяснение устройства и принципа действия холодильника.

Преобразования энергии в тепловых машинах. Экологические проблемы использования тепловых машин.

Демонстрации

Сжимаемость газов. Диффузия в газах и жидкостях. Модель хаотического движения молекул. Модель броуновского движения.

Сохранение объема жидкости при изменении  формы сосуда. Сцепление свинцовых цилиндров. Принцип действия термометра.

Изменение внутренней энергии тела при совершении работы и при теплопередаче. Теплопроводность различных материалов.

Конвекция в жидкостях и газах. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ.

Явление испарения. Кипение воды. Постоянство температуры кипения жидкости. Явления плавления и кристаллизации.

Измерение влажности воздуха психрометром или гигрометром. Устройство четырехтактного двигателя внутреннего сгорания.

Устройство паровой турбины

Лабораторные работы и опыты

Исследование изменения со временем температуры остывающей воды. Изучение явления теплообмена.

Измерение удельной теплоемкости вещества. Измерение влажности воздуха.

Исследование зависимости объема газа от давления при постоянной температуре.

Электрические и магнитные явления

Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда.

Электрическое поле.Действие электрического поля на электрические заряды. Проводники, диэлектрики и полупроводники. Конденсатор.  Энергия электрического поля конденсатора.

Постоянный электрический ток. Источники постоянного тока. Действия электрического тока.  Сила тока. Напряжение. Электрическое сопротивление. Электрическая цепь.Закон Ома для участка электрической цепи. Последовательное и параллельное соединения проводников.Работа и мощность электрического тока. Закон Джоуля-Ленца. Носители электрических зарядов в металлах, полупроводниках, электролитах и газах. Полупроводниковые приборы.

Опыт Эрстеда. Магнитное поле тока. Взаимодействие постоянных магнитов. Магнитное поле Земли. Электромагнит.  Действие магнитного поля на проводник с током.  Сила Ампера. Электродвигатель. Электромагнитное реле.

Демонстрации

Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Проводники и изоляторы.

Электризация через влияние Перенос электрического заряда с одного тела на другое. Закон сохранения электрического заряда.

Устройство конденсатора. Энергия заряженного конденсатора. Источники постоянного тока. Составление электрической цепи.

Электрический ток в электролитах. Электролиз. Электрический ток в полупроводниках. Электрические свойства полупроводников.

Электрический разряд в газах. Измерение силы тока амперметром.

Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

Измерение силы тока в разветвленной электрической цепи. Измерение напряжения вольтметром.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Удельное сопротивление. Реостат и магазин сопротивлений. Измерение напряжений в последовательной электрической цепи.

Зависимость силы тока от напряжения на участке электрической цепи. Опыт Эрстеда. Магнитное поле тока.

Действие магнитного поля на проводник с током. Устройство электродвигателя.

Лабораторные работы и опыты

Наблюдение электрического взаимодействия тел Сборка электрической цепи и измерение силы тока и напряжения. Исследование

зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Исследование зависимости силы

тока в электрической цепи от сопротивления при постоянном напряжении. Изучение последовательного соединения проводников.

Изучение параллельного соединения проводников. Измерение сопротивление при помощи амперметра и вольтметра.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала.

Удельное сопротивление. Измерение работы и мощности электрического тока. Изучение электрических свойств жидкостей.

Изготовление гальванического элемента. Изучение взаимодействия постоянных магнитов. Исследование магнитного поля прямого

проводника и катушки с током. Исследование явления намагничивания железа. Изучение принципа действия электромагнитного

реле. Изучение действия магнитного поля на проводник с током. Изучение принципа действия электродвигателя.

Тип материала: Презентация Power Point (pptx)
Размер: 266.58 Kb
Количество скачиваний: 14
Просмотров: 87

Похожие материалы