Урок математики в 10-м классе по теме: "Иррациональные уравнения"
Предмет: | Математика |
---|---|
Категория материала: | Конспекты |
Автор: |
Дворянкина Елена Николаевна
|
Цель урока:
· проверить знания корня n-ой степени,
· ввести понятие иррациональных уравнений,
· показать способы их решения,
· проверить степень усвоения учащимися материала.
План урока
Ход урока
1. Организационный момент
2. Для того, чтобы хорошо работать на уроке, нужен настрой. Начнем, как всегда, с задачи на внимание. Смотрим и запоминаем.
Учитель несколько секунд показывает карточку с заданием классу, а затем убирает её и задаёт вопросы:
3. Устная работа
, , , , , , , .
, ; ; , ; , , .
4. Самостоятельная работа
Математика, как и другие науки, дала миру огромное количество ученых от древности до наших дней, смысл жизни которых состоял в продвижении науки вперёд, в открытии новых закономерностей, формул, доказательств теорем.
Выполнив задание теста, вы назовете имя видного немецкого учёного, который внёс огромный вклад в развитие геометрических пространств.
5. Объяснение нового материала
Определение. Уравнения, в которых под знаком корня содержится переменная, называют иррациональными.
Из предложенных уравнений назовите номера тех, которые являются иррациональными.
1) =10;
2)
3);
4) ;
5) ;
6) ;
7) ;
8) ;
Верные ответы дают год рождения Георга Римана-1826.
Решим данные иррациональные уравнения. Ход решения объясняют у доски ученики, подготовленные учителем заранее.
1-ый ученик:
Возведём обе части уравнения в квадрат, получим:
;
;
,
Проверка.
Если , то , Если, то ,
10=10-верно. 10=10-верно.
Значит, корень уравнения. Значит,корень уравнения.
Ответ. -3;3.
2-ой ученик:
1-ый способ решения.
,
,
Возведём обе части уравнения в квадрат, получим:
,
,
,
Проверка.
Если , то , Если , то ,
5 = 1 - неверно. 8 = 8 - верно.
Значит, посторонний корень. Значит, корень уравнения.
Ответ. .
2-ой способ решения (объясняет учитель).
,
Может ли выражение в правой части быть отрицательным? Перейдём к смешанной системе:
Ответ.
Уравнение 8) решаем самостоятельно (ученик за доской) с последующей проверкой.
Ответ.
Вывод.
1) Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путём возведения в степень обеих частей уравнения.
2) При возведении обеих частей уравнения в чётную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение.
6. Домашнее задание: п. 12, №№ 231, 232(1, 3), 233 (2, 4).
7. Закрепление. Работа по таблицам (у каждого ученика имеется таблица, по которой они решают устно названное учителем уравнение, проговаривая ход решения).
А-2, В-3, А-5, В-6, В-8, А-9, В-4.
Подведение итога урока и выставление оценок.
Если останется время можно провести самостоятельную работу по карточке.
1-ый вариант: В-14, А-17; 2-ой вариант: В-5, А-12;3-ий вариант (сильным ученикам): В-9, А-18
Тип материала: | Документ Microsoft Word (doc) |
---|---|
Размер: | 174 Kb |
Количество скачиваний: | 20 |