По теме "Решение задач с практическим содержанием (№ 19) в ЕГЭ по математике"

Предмет: Математика
Категория материала: Конспекты
Автор:

Практические задачи № 19

1. За­да­ние 19 № 506090. 31 де­каб­ря 2013 года Сер­гей взял в банке 9 930 000 руб­лей в кре­дит под 10% го­до­вых. Схема вы­пла­ты кре­ди­та сле­ду­ю­щая: 31 де­каб­ря каж­до­го сле­ду­ю­ще­го года банк на­чис­ля­ет про­цен­ты на остав­шу­ю­ся сумму долга (то есть уве­ли­чи­ва­ет долг на 10%), затем Сер­гей пе­ре­во­дит в банк опре­делённую сумму еже­год­но­го пла­те­жа. Какой долж­на быть сумма еже­год­но­го пла­те­жа, чтобы Сер­гей вы­пла­тил долг тремя рав­ны­ми еже­год­ны­ми пла­те­жа­ми?

2. За­да­ние 19 № 506948. За время хра­не­ния вкла­да в банке про­цен­ты по нему на­чис­ля­лись еже­ме­сяч­но сна­ча­ла в раз­ме­ре 5%, затем 12%, потом и, на­ко­нец, 12,5% в месяц. из­вест­но, что под дей­стви­ем каж­дой новой про­цент­ной став­ки вклад на­хо­дил­ся целое число ме­ся­цев, а по ис­те­че­нии срока хра­не­ния пер­во­на­чаль­ная сумма уве­ли­чи­лась на Опре­де­ли­те срок хра­не­ния вкла­да.

3. За­да­ние 19 № 506949. В на­ча­ле года 5/6 не­ко­то­рой суммы денег вло­жи­ли в банк А, а то, что оста­лось — в банк Б. Если вклад на­хо­дит­ся в банке с на­ча­ла года, то к концу года он воз­рас­та­ет на опре­делённый про­цент, ве­ли­чи­на ко­то­ро­го за­ви­сит от банка. Из­вест­но, что к концу пер­во­го года сумма вкла­дов стала равна 670 у.е., к концу сле­ду­ю­ще­го — 749 у.е. Если пер­во­на­чаль­но 5/6 суммы было бы вло­же­но в банк Б, а остав­шу­ю­ся вло­жи­ли бы в банк А, то по ис­те­че­нии од­но­го года сумма вы­рос­ла бы до 710 у.е. Опре­де­ли­те сумму вкла­дов по ис­те­че­нии вто­ро­го года в этом слу­чае.

Тип материала: Документ Microsoft Word (docx)
Размер: 1.86 Mb
Количество скачиваний: 10
Просмотров: 84

Похожие материалы