Презентация по алгебре 7 класс свойства степени
| Предмет: | Математика | 
|---|---|
| Категория материала: | Конспекты | 
| Автор: | 
                        31052007L Елена Алексеевна
                         | 
                
Мы восстанавливаем материалы только с согласия их авторов.
Степень с натуральным показателем и ее свойства.
Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:
an =
В выражении an :
- число а (повторяющийся множитель) называют основанием степени
- число n (показывающее сколько раз повторяется множитель) – показателем степени
Например:
25 = 2·2·2·2·2 = 32,
здесь:
2   – основание степени,
5   – показатель степени,
32 – значение степени
Отметим, что основание степени может быть любым числом.
Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).
Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108
Каждое число большее 10 можно записать в виде: а · 10n , где 1 < a < 10 и n – натуральное число. Такая запись называется стандартным видом числа.
Например: 4578 = 4,578 · 103 ;
103000 = 1,03 · 105.
Свойства степени с натуральным показателем:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются
am · an = am + n
например: 71.7 · 7 - 0.9 = 71.7+( - 0.9) = 71.7 - 0.9 = 70.8
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются
am / an = am — n ,
где, m > n, a ? 0например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6
| Тип материала: | Архив ZIP (zip) | 
|---|---|
| Размер: | 21,5 МБ | 
| Количество скачиваний: | 3 |