Рабочая программа по математике 5 класс (Мерзляк)

Предмет: Математика
Категория материала: Рабочие программы
Автор:

РАБОЧАЯ ПРОГРАММА

по математике

Учитель: Дмитрук Юлия Александровна

Год реализации программы: 2014/ 2015 учебный год

Класс: 5

Общее количество часов по плану:204часов

Количество часов в неделю: 6

Пояснительная записка

Рабочая программа рассчитана на 35 недель по 6 часов в неделю. В итоге на преподавание математике в 5 классах отводиться 210 часов. Поскольку моя программа рассчитана на 34 недели, следовательно, на преподавание математике остается 204 час. Мне пришлось убрать 6 часов, получились следующие изменения:

Глава 1 Натуральные числа-23 часа

Глава 2 Сложение и вычитание натуральных чисел-38 часов

Глава 3 Умножение и деление натуральных чисел-45 часов

Глава 4 Обыкновенные дроби 20 часов

Глава 5 Десятичные дроби -55 часов

Повторение и систематизация учебного материала-23 часа

Рабочая программа составлена на основании:

авторской программы по математике для 5-6 классов общеобразовательных учреждений. Математика : программы : 5–9 классы / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко. — М. : Вентана-Граф, 2012. — 112 с.;

фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учётом преемственности с примерными программами для начального общего образования по математике.

Программа соответствует учебнику «Математика» для 5 класса образовательных учреждений/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В Буцко.-М.:Вентана-Граф,2012

В ней так же учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Цели:

  • формирование представлений о математике как универсальном языке;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения школьных естественных дисциплин на базовом уровне;
  • воспитание средствами математики культуры личности;
  • понимание значимости математики для научно-технического прогресса;
  • отношение к математике как к части общечеловеческой культуры через знакомство с историей её развития.

Задачи:

  • сохранить теоретические и методические подходы, оправдавшие себя в практике преподавания в начальной школе;
  • предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;
  • обеспечить уровневую дифференциацию в ходе обучения;
  • обеспечить базу математических знаний, достаточную для изучения алгебры и геометрии, а также для продолжения образования;
  • сформировать устойчивый интерес учащихся к предмету;
  • выявить и развить математические и творческие способности;
  • развивать навыки вычислений с натуральными числами;
  • учить выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями, действия с десятичными дробями;
  • дать начальные представления об использование букв для записи выражений и свойств;
  • учить составлять по условию текстовой задачи, несложные линейные уравнения;
  • продолжить знакомство с геометрическими понятиями;
  • развивать навыки построения геометрических фигур и измерения геометрических величин.

Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а так же учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7–9 классах, а так же для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приемы, как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, на пример решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, под хода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Содержание курса математики в 5 классе

Содержание математического образования в 5 классе представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а так же приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической «речи», развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Общая характеристика курса математики в 5 классе

Арифметика

Натуральные числа

• Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.

• Координатный луч.

• Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

• Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

• Решение текстовых задач арифметическими способами.

Дроби

• Обыкновенные дроби. Правильные и неправильные дроби. Смешанные числа.

• Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

• Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

• Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

• Решение текстовых задач арифметическими способами.

Величины. Зависимости между величинами

• Единицы длины, площади, объёма, массы, времени, скорости.

• Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

• Числовые выражения. Значение числового выражения.

• Порядок действий в числовых выражениях. Буквенные выражения. Формулы.

• Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

• Представление данных в виде таблиц, графиков.

• Среднее арифметическое. Среднее значение величины.

• Решение комбинаторных задач.

Геометрические фигуры. Измерения геометрических величин

• Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

• Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

• Прямоугольник. Квадрат. Треугольник. Виды треугольников.

• Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Ось симметрии фигуры.

• Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб. Примеры развёрток многогранников. Понятие и свойства объёма. Объём прямоугольного параллелепипеда и куба.

Математика в историческом развитии

Тип материала: Документ Microsoft Word (docx)
Размер: 37.68 Kb
Количество скачиваний: 279
Просмотров: 204

Похожие материалы