Презентация к уроку по теме "Правильные многогранники"
Предмет: | Математика |
---|---|
Категория материала: | Презентации |
Автор: |
Маципура Татьяна Глебовна
|
Слайд 1 (фигуры многогранников)
Преподаватель: Есть в курсе геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести тему «Многогранники», с которой мы с Вами начали знакомство несколько уроков назад.
Вопросы: Слайд 2 (вопросы и ответы)
1. Какую фигуру называют многогранником? (часть пространства, ограниченная плоскими многоугольниками)
2. Какие многогранники мы рассматривали? (призма, параллелепипед, куб, пирамида, тетраэдр, усеченная пирамида)
3. Назовите многогранники, которые я буду показывать. ( призмы, пирамиды, параллелепипед, куб).
Есть такие особенные многогранники, которые мы с вами сегодня рассмотрим. Давайте постараемся сейчас дать название группе таких многогранников. Показываю многогранники и задаю вопросы об их виде: какие плоские фигуры ограничивают многогранники? (правильные треугольники, правильные четырехугольники, правильные пятиугольники)
ИТАК: как вы думаете, как назвать такие многогранники? (правильные)
Запишите тему нашего занятия: Слайд 3-4
«ПРАВИЛЬНЫЕ МНОГОГРАННИКИ»
Преподаватель: "Правильные многогранники", здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. Сегодня на уроке мы узнаем и увидим много интересного, нам предстоит ответить на такие вопросы, как, например: Какие многогранники называются правильными? Сколько их существует? И многие - многие другие… И, наконец: где, зачем и для чего нам нужны многогранники? Может быть, в жизни можно обойтись и без них? Данный материал пригодится нам при изучении темы "Объемы многогранников» и при решении задач на комбинацию геометрических тел.
3. Изучение нового материала.
Объяснение нового материала учителем. (20 минут).
Слайды 5-10(определение правильный многогранника; тетраэдр; гексаэдр; октаэдр; додекаэдр; икосаэдр)
Преподаватель: Название "правильные” идет от античных времен, когда стремились найти гармонию, правильность, совершенство в природе и человеке. Попытаемся дать определение правильным многогранникам:
беседа: показываю правильные многогранники и задаю вопросы:
1. это фигура, которая ограничена…? (правильными многоугольника);
2. сколько ребер исходит из одной вершины? (одинаковое количество).
Слайд5
ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками и в каждой вершине которого сходится одно и то же число ребер.
Слайд6-7
ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников. Вершин – 4, ребер-6, граней-4.
Слайд8-9
ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов). Вершин – 8, ребер-12, граней-6.
Слайд10-11
ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников. Вершин – 6, ребер-12, граней-8.
Слайд12-13
ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников. Вершин – 20, ребер-30, граней-12.
Слайд14-15
ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников. Вершин – 12, ребер-30, граней-20.
Преподаватель. Все правильные многогранники были известны еще в Древней Греции, и сейчас мы перенесемся в Др.Грецию и узнаем какой след оставили правильные многогранники в философской карте мира.
«Правильные многогранники в философской картине мира Платона»
Слайд16
Названия этих многогранников пришли из Древней Греции, им посвящена заключительная, 13-я книга знаменитых "Начал” Евклида, и в них указывается число граней:
«эдра» - грань
«тетра» - 4
«гекса» - 6
«окта» - 8
«додека» - 12
«икоса» - 20
Слайд17
Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.). Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.
Слайд №18
Такие изображения правильных многогранников были представлены Платоном. Это была одна из первых попыток ввести в науку идею систематизации./спасибо за внимание/
Слайд №19
Прежде чем перейти непосредственно к Солнечной системе Кеплера, я хотела бы еще раз напомнить, что многогранник – это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников.
Слайд №20
Многогранники бывают произвольные, правильные и полуправильные.
Слайд №21
Правильный многогранник – это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией. Например, у меня на рисунке изображен октаэдр, он состоит из восьми равносторонних треугольников и из каждой вершины исходит четыре ребра.
Слайд №22
Многие ученые занимались исследованием многогранников, такие как Эвклид, Архимед, Кеплер и многие другие. Они высказывали разнообразные теории и гипофизы, с некоторыми из них я бы хотела вас познакомить.
Слайд №23
Космологическая гипотеза Кеплера.
Кеплер попытался связать со свойствами правильных многогранников некоторые свойства Солнечной системы.
Он предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.
Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.
Слайд №24
Теория Макарова и Морозова о икосаэдро-додекаэдровой структуре Земли.
Слайд №25-26
В начале 80-х гг. московские инженеры В. Макаров и В. Морозов высказали свою гипотезу. Они считали, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.
Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.
Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место, однако в наше время это научно не доказано.
Слайд №27
А вот открытие правильных многогранников по праву принадлежит Теэтету Афинскому. Именно он дал математическое описание всем пяти правильным многогранникам и, собственно говоря, первое известное доказательство того, что их ровно пять.
Слайд №28
Правильные многогранники окружают нас повсюду. Искусство, наука, природа, архитектура – вот далеко не полный перечень сфер, в которых они употребляются.
Слайд №29
Закончить я бы хотела словами Бертрана Рассела: «Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства.»
Спасибо за внимание.
Слайд 29 - 38 (таблицы для заполнения и эталоны таблиц, а так же развертки правильных многогранников)
"Многогранники в искусстве"
Слайд 39
В эпоху Возрождения произошло слияние трех течений, что упростило изучение многогранников. С одной стороны, с возвратом интереса к Античности стало уделяться особое внимание этим геометрическим фигурам. С другой стороны, с распространением математической перспективы впервые стало возможным «увидеть» эти фигуры на рисунках, и они стали изучаться более подробно.
Слайд 40
Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи (1452-1519) — символ неразрывности искусства и науки, а следовательно, закономерен его интерес к таким прекрасным, высоко симметричным объектам, как выпуклые многогранники вообще и усеченный икосаэдр в частности. Изображения Леонардо да Винчи додекаэдра методом жестких ребер и методом сплошных граней.
Слайд 41
Знаменитый художник, увлекавшийся геометрией, Альбрехт Дюрер (1471- 1528), в известной гравюре «Меланхолия» на переднем плане изобразил додекаэдр
Слайд 42
Голландский художник МорицКорнилисЭшер(1898-1972)создал уникальные и очаровательные работы, в которых использованы или показаны широкий круг математических идей. Правильные геометрические тела -многогранники - имели особое очарование для Эшера. В его многих работах многогранники являются главной фигурой и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. На гравюре "Четыре тела" Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.
Наиболее интересная работа Эшера-гравюра "Звезды", на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры.
Слайд 43
На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображѐн на фоне огромного прозрачного додекаэдра. Форму додекаэдра, по мнению древних, имела ВСЕЛЕННАЯ , т.е. они считали, что мы живѐм внутри свода, имеющего форму поверхности правильного додекаэдра.
Слайд 44
Между несовместимым всегда есть грань.
Но иногда эта грань исчезает и несовместимое сливается в единое целое.
Мне хотелось показать как эта грань исчезает между миром искусства и миром математики./спасибо за внимание/
МНОГОГРАННИКИ И АРХИТЕКТУРА
Слайд 45
Многогранники в архитектуре
Слайд 46
Как уже известно,первые архитектурные сооружения строилисьиз камней,кусков глины,дерева и влажного песка.
Если мы рассмотрим первые архитектурные сооружения,которые строились из камней,то можно отметить,что уже тогда человек выбирал самые выразительные по форме и величине камни.
Слайд 47
Пирамидальная форма в строительстве была популярна в древнем мире. Построить такое сооружение-трудная инженерная задача края блоков должны быть очень точно выверены и выровнены с самого начала строительства,иначе они не сойдутся в одной точке на вершине пирамиды. Британский физик К.Мендельсон ставит вопрос как без современных научных приборов древние египтяне могли определить направление на нужную точку в воздухе и строить прямо по направлению на нее. Ошибка даже в два градуса могла бы привести в итоге к плачевным результатам.
Слайд 48
Фаросский маяк состоял из трех мраморных башен,стоявших на основании из массивных каменных блоков.первая башня была прямоугольной.
Над этой башней рассполагалась меньшая,восьмиугольная башня со спиральным пандусом,ведущим в верхнюю башню.
Верхняя башня формой напоминала цилиндр.в котором горел огонь,помогавший кораблям благополучно достигнуть бухты.На вершине башни стояла статуя зевса Спасителя.Высота-117метров.
Слайд49
Многогранные башни смоленской крепости
в плане крепость имела вид неправильной замкнутой фигуры,которая как бы прижималась к Днепру.В состав крепости входило 38прясел и столько же башен.внизу стена сложена из правильных,хорошо отесанных прямоугольных блоков камня длинной от 92до 21см.и высотой от34 до 24см.,а вверху из хорошо обоженного кирпича,средние размеры которого31*15*6см.
Слайд 50
Современная архитектура
Слайд 51
Новогодний хрустальный шар в Нью-Йорке обновили к 100-летнему юбилею.Почти двухметровый в диаметре,состоящий из 672 хрустальных треугольников шар заиграл неповторяющимися цветовым решениями,включая,конечно,звездо-полосатый американский флаг.Теперь шар светит вдвое ярче,потребляет энергии всего лишь как 20фенов и благодаря новым технологиям имеет 16миллионов цветовых комбинаций.
Слайд 52
Купола Фуллера в современной архитектуре
Фуллер-американсикй архитектор и инженер.Разроботал легкие и прочные геодезические купола.
Слайд 53
Идея геодезических куполов достаточно проста.сфера представляется в виде правильных треугольников.Эта фигура и разворачивается на плосткость,давая неискаженные соотношения по всей поверхности.
Эта конструкция оказалась очень эффективной при том что она позволяет прекрывать большие пространства практически без ограничений по площади,но еще ее экономическая целесобразность возростает пропорционально размеру,также она обладает очень хорошими характеристиками прочности-выдерживает порывы ураганного ветра до 210миль.час. /спасибо за внимание/
Преподаватель:
Слайд 54
Можно ли считать приведенную архитектуру правильными многогранниками?
Почему?
Тип материала: | Презентация Power Point (ppt) |
---|---|
Размер: | 6.28 Mb |
Количество скачиваний: | 2 |